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Optical conductivity of the Bechgaard salts:
the sum rules revisited
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Abstract. The validity of the optical sum rules has been addressed eversince and was always matter of
debate. Particularly controversial is the proof that the partial sum rules can be extended to both optical
conductivity and energy loss function. We show in this paper that for both transverse (optical conductivity)
and longitudinal (energy loss function) absorption processes the corresponding sum rule can be theoretically
established and through appropriate conditions for the integration limits exactly verified. We also focus
our attention on the one-dimensional case within the microscopic Hubbard model. An application of these
concepts to the quasi one-dimensional systems, for which we have chosen the organic (TMTSF)2PF6

material, will also be presented.

PACS. 78.20.-e Optical properties of bulk materials and thin films – 75.30.Fv Spin-density waves

1 Introduction

1.1 Partial sum rule for the loss function

The global sum rule on the real part of the optical con-
ductivity

Iσ = 8

∫ ∞
0

σ1(ω)dω = −
4πe2

Ω
〈Ψ0|Hkin|Ψ0〉, (1)

where Ω is the volume and Hkin is the kinetic energy
Hamiltonian, has been shown to remain valid for a single
tight-binding band by Maldague in 1977 [1], in which case
one talks of a partial sum rule. The proof that the similar
global sum rule for the loss function

Ip =
2

π

∫ ∞
0

ωIm

(
−1

ε⊥(ω)

)
dω = −

4πe2

Ω
〈Ψ0|Hkin|Ψ0〉,

(2)

where ε⊥(ω) is the transverse complex dielectric function,
can also be extended to a single tight-binding band has
not been given so far.

On the basis of experimental data, Jacobsen was led
to the conclusion that there is no such partial sum rule
for the loss function [2]. In fact, Jacobsen presented re-
flectivity data and the analysis of the optical sum rules
for the quasi-one-dimensional organic conductor DBTTF-
TCNQCl2 at room temperature [2]. The main conclusion
of his analysis is that since the sum rule of the real part of
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the optical conductivity (Iσ) is related to the kinetic en-
ergy [3], short-range electron-electron interactions increas-
ing the kinetic energy, lead to a reduction in the oscillator
strength and thus the saturation value of the sum rule Iσ
is smaller than the saturation limit of the sum rule of the
loss function (Ip). The sum rule of the loss function is sup-
posed to be unaffected by short range correlations and Ip
should saturate close to ω2

p, where ωp is the plasma fre-
quency. From this apparent discrepancy between the satu-
ration limit of Ip and Iσ , Jacobsen estimated values of the
correlation parameters U , the on-site repulsion, and V , the
nearest-neighbour repulsion, for DBTTF-TCNQCl2 [2].

Here, we want first of all to demonstrate that the ar-
gument by Jacobsen is theoretically not strictly correct
since in fact the global sum rule for the loss function can
be extended to a single band. The response to a longitudi-

nal probe is given by the causal response function
1

ε‖
− 1

which, under very general conditions, satisfies:

2

∫ ∞
0

ω

(
1

ε‖(q, ω)
− 1

)
dω =

−iπe

Ω
V (q)

× 〈Ψ0

∣∣[[H, ρ−q], ρq

]∣∣Ψ0〉.
(3)

Here V (q) is the Fourier transform of the interaction be-
tween electrons, ε‖(q, ω) is the longitudinal complex di-
electric function and |Ψ0〉 is the ground state of H. Let us
now consider the Hamiltonian:

H = Hkin +
∑
r,r′

Vr,r′nrnr′ . (4)
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To describe a single band model, we choose a tight binding
Hamiltonian for the kinetic part:

Hkin = −
∑

r,σ,α∈{a,b,c}

tα(c†r+δα,σcr,σ + h.c.) (5)

where δa, δb, δc are the basic lattice vectors. The interac-
tion term does not contribute to the double commutator,
which can be easily shown to be equal to:[

[H, ρ−q], ρq

]
= −

∑
α

4 sin2
(qα

2

)
Hkin,α (6)

with Hkin,α = −
∑

r,σ tα(c†r+δα,σcr,σ+h.c.).
To make contact with the experimental situation, let

us now specialize to the case where q is parallel to a lat-
tice vector, say δa. In the limit qa → 0, 4 sin2(qa/2) ∼= q2

a.
Besides, regardless of the nature of local interactions, the
Fourier transform of the two-body interaction is domi-
nated by the long-range Coulomb interaction in this limit,
and V (q) ∼= 4πe/q2 = 4πe/q2

a.
So in this small qa limit we get:

2 lim
qa→0

∫ ∞
0

ωIm

(
−1

ε‖(q, ω)

)
dω = −

4π2e2

Ω
〈Ψ0|Hkin,a|Ψ0〉.

(7)

Finally, we note that the longitudinal and transverse di-
electric functions are equal in the q→ 0 limit. Therefore,
the sum rule of equation (2) is valid for a single band.
In other words, the same partial sum rule is valid for the
energy loss function and for the real part of the optical
conductivity.

1.2 On the experimental verification of the sum rules

The consistency of these partial sum rules has been
checked experimentally for a number of metals quite some
time ago [4,5]. In principle, the optical sum rules provide
a useful guide to interpreting the experimental results and
could be used in order to check the consistency of optical
data. Indeed, the optical functions can be experimentally
determined over a limited frequency range and the redis-
tribution of spectral weight in dispersive (i.e., the real
part of the dielectric function, ε1) and absorptive (i.e.,
imaginary part of the dielectric function, ε2) processes
might be affected by the finite cutoff frequency used as
integration limit in the Kramers-Kronig relation between
ε1 and ε2.

However, there is one subtlety in this analysis. One is
never in the situation where a band is alone, and the sum
rule can only be valid if one includes high energy bands in
the integration. Now if the conduction band is well sepa-
rated from the empty bands, the real part of the dielectric
function ε1(ω) will have a plateau above the conduction
band at a value usually called εc, and the following sum
rule can be proven:

ε2
c

∫ ω+

0

ωIm

(
−1

ε⊥(ω)

)
dω = 4π

∫ ω+

0

σ1(ω)dω (8)

where the frequency ω+ should be above the screened
plasma frequency Ωp, at which the main contribution to
the loss function is located, but below the beginning of the
next contribution coming from high energy bands. From
now on, Iσ will refer to the quantity defined in equation
(1) but with a cut-off ω+, and Ip will refer to the quantity
of equation (2) multiplied by ε2

c and with a cut-off ω+.
Note that the screened plasma frequency is related to the
unscreened plasma frequency ωp by ωp =

√
εcΩp.

This is the ideal situation where the optical conductiv-
ity of the conduction electrons is given by a simple Drude
peak. Now, if the electron-electron interactions are strong
enough, some spectral weight can be transferred to fre-
quencies of the order of the band width and/or of the
local correlation parameters. Suppose that this weight ex-
tends up to a frequency ωc. As long as these contributions
are still well separated from the high energy bands, one
can still hope to verify the consistency of the partial sum
rules by including εc, but one should now integrate up to
an energy larger than ωc. Let us now assume that ωc is
larger than the screened plasma frequency Ωp. The sum
rule on the loss function will still have a plateau above Ωp,
but some weight will still be missing both in the conduc-
tivity and in the loss function. Now, we have verified on a
number of test cases that the following inequality holds:

ε2
c

∫ ω0

0

ωIm

(
−1

ε⊥(ω)

)
dω ≤ 4π

∫ ω0

0

σ1(ω)dω. (9)

The equality is satisfied when ω0 ≥ ωc. So, if we compare
the sum rules for the conductivity and the loss function,
we expect them to saturate at the same value just above
Ωp if all the weight of the conduction band is in the Drude
peak, and we expect the plateau in the sum rule of the
loss function just above Ωp to be below the sum rule on
the conductivity if some spectral weight coming from the
conduction band is distributed over a frequency range ex-
tending beyondΩp. Interestingly enough, this result seems
to be in clear contradiction with the results reported by
Jacobsen [2].

The purpose of this paper is to revisit the sum rules’
concept, particularly for the quasi-one-dimensional (1D)
systems. In the present analysis of this problem, we will
focus our attention on the quasi-one-dimensional organic
(TMTSF)2PF6 compound on which a complete set of
thorough optical data has been recently collected [6–8].
The main goal of this paper is to use the electrodynamic
response of (TMTSF)2PF6 with the scope of checking the
validity of the partial sum rules for a one-dimensional sys-
tem, where the presence of an upper Hubbard band due
to correlations has to be taken into account. The effect
of such correlations in the frequency dependence of the
electrodynamic response should lead to some incoherent
spectral weight above but not too far from the plasma
frequency, which should be considered in the analysis of
the partial sum rules. First of all, we will briefly present
the investigated system together with some details about
the optical measurements and the corresponding evalua-
tion of the optical functions. Then, we will address the
problem concerning the estimation of the sum rules from
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Fig. 1. Components (a) ε2(ω) and (b) ε1(ω) on a loga-
rithmic energy scale of the complex dielectric function ob-
tained from Kramers-Kronig analysis of the reflectivity mea-
surements of (TMTSF)2PF6 along the highly conducting axis
at T = 20 K [6]. The inset shows ε1(ω) on a linear energy scale
and the result of the fit after equation (11).

the experimental data. Finally, a discussion of the relevant
results will be performed in the perspective of a micro-
scopic model, based on a 1D extended Hubbard model.

2 Experiment and results

2.1 The data

The Bechgaard salts (TMTSF)2X, where X is an inor-
ganic monovalent anion PF6, ClO4, SbF6, ReO4, BF4 or
NO3, have been found to have extremely high conduc-
tivity along at least one crystallographic axis and highly
anisotropic band structures, leading to Fermi surface in-
stabilities and therefore to phase transitions [9]. The or-
ganic conductor (TMTSF)2PF6, on which we will focus
our attention, undergoes a transition to a SDW state at
TSDW = 12 K, and it was found to be superconducting
under pressure [10].

Figure 1 shows ε1(ω) and ε2(ω) on a logarithmic en-
ergy scale obtained by Kramers-Kronig transformation of
the measured optical reflectivity R(ω) with the polariza-
tion direction parallel to the highly conducting axis (E||a)

in the normal metallic state at 20 K (i.e., T > TSDW )
[6,8]. In this respect, it is worth noting that the Kramers-
Kronig transformation, which yields the real and imagi-
nary part of the complex dielectric function ε(ω) neces-
sary to evaluate Iσ and Ip, requires the knowledge of one
of the optical function for all frequencies from zero to in-
finity. In order to address this issue the reflectivity R(ω)
of a large single crystal of (TMTSF)2PF6 was measured
over an extremely broad spectral range combining the re-
sults from different spectrometers in the submillimeter,
infrared, optical and ultraviolet frequency ranges [6]. The
Hagen-Rubens extrapolation for the low frequency limit
and the power law R(ω) ∝ ω−4, representing the free-
electron behaviour for the high energy region above 12 eV
were assumed. A detailed report on the optical investiga-
tion of the system in its normal (T > TSDW ) and SDW-
ground state (T < TSDW ) can be found elsewhere [6–8].

In this paper we do not want to give a physical in-
terpretation of the optical response in the normal state,
but refer to reference [6,8] for a comprehensive discus-
sion. Nevertheless, it is worthwhile to remind a few gen-
eral features. The spectra are characterized by a very nar-
row Drude-like term ascribed to free carriers at zero en-
ergy (ZE) and a rather broad finite energy (FE) excitation
around 3× 10−2 eV (see ε2(ω)). Moreover, the sum of the
spectral weight of the two components∫ ωi

0

σZE1 (ω)dω +

∫ ∞
ωi

σFE1 (ω)dω =
ω2
p

8
, (10)

where ωi ∼ 20 cm−1 is a cut-off frequency between the
ZE and FE modes, leads to a total plasma frequency of
ωp = 13.6 eV. The ZE mode contains only 1% of the total
spectral weight, the remaining part being encountered by
the FE mode [6].

Finally, Figure 2a displays the real part σ1(ω) of the

complex optical conductivity σ(ω) =
ω

4πi
(ε(ω) − 1) and

the loss function Im

(
−1

ε⊥(ω)

)
on a linear energy scale. In

view of the coming discussion we note the peak at about
0.9 eV of the loss function, which will be ascribed to the
screened plasmon.

2.2 The optical sum rules

The sum rules Iσ and Ip differ significantly as a func-
tion of energy, because they describe somewhat different
processes. The right hand side of equation (8), the sum
rule on the optical conductivity Iσ, is related to the rate
of energy absorption by the system from transverse fields
(photons) and the left hand side of equation (8), the sum
rule on the electron loss function Ip, to the rate of energy
absorption by the system from longitudinal fields (elec-
trons) [11]. Iσ(ω) thus measures the intraband oscillator
strength, while Ip(ω) is related to plasma excitations. Note
that the saturation value of both Iσ(ω) and Ip(ω) should
be the plasma frequency ω2

p (Eq. (10)).
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Fig. 2. (a) Real part of the optical conductivity σ1(ω) and en-
ergy loss function −Im(1/ε⊥) given on a linear energy scale [6].
(b) Optical conductivity and energy loss function of the one-
dimensional extended Hubbard model at quarter-filling with
U/t = 5 and V/t = 2 for a 16-site cluster. The peaks have
been given an arbitrary width of 0.1t.

In view of the experimental verification of the partial
sum rules (Eq. (8)), the first step in our analysis is to find
the most precise way of determining εc. This is essential
since different determination of the optical dielectric con-
stant may lead to very strong deviations of the saturation
values of Iσ and Ip. The different ways employed in de-
termining εc could probably explain the difference in the
sum-rules analysis between our results and those of Ja-
cobsen [2]. The best way to determine εc is to fit the real
part of the dielectric constant ε1(ω) around Ωp, in other
words at the zero crossing of ε1(ω) (i.e., ε1(Ωp) = 0) by
the expression:

ε1(ω) = εc

[
1−

(
Ωp

ω

)2
]

(11)

where Ωp and εc are free parameters. The result of such a
fit is given in the inset of Figure 1a. The value found for
εc is 2.8.

It is worth noting that the maximum of the loss func-
tion is found at 0.86 eV, in agreement with Ωp = 0.8 eV
obtained from our fit (Eq. (11)). Apart from the free car-
rier contribution and the contribution coming from high

Fig. 3. (a) Sum rule calculations based on the data of Figure 2
for (TMTSF)2PF6 at 20 K. (b) Optical sum rules of the optical
conductivity (Iσ) and of the energy loss function (Ip) for the
model of Figure 2b.

energy bands, there is clear evidence for some residual
spectral weight above Ωp, which can have important con-
sequences on the partial sum rules.

The result of the analysis for (TMTSF)2PF6 at 20 K
is shown in Figure 3a. We integrated both functions in
equation (8) up to ω+ = 10 eV. For energies higher than
this cut-off frequency absorptions no longer take place and
ε2(ω) is zero. Both Iσ and Ip saturate near ω2

p, even though
the saturation value of the integral of the loss function
remains below the integral of the optical conductivity over
the whole investigated spectral range.

3 Discussion

From equation (8) it clearly appears, that the effect of
εc on the electron energy loss function sum rule is very
strong. Thus, one of the crucial issues for the consistency
of the sum rules seems to be the value of εc. With an accu-
rate estimate for the dielectric constant, the two sum rules
should agree, if there is no spectral weight at higher energy
due to correlations. This is not the case in (TMTSF)2PF6,
as can be seen in Figure 2, where, due to electron-electron
interactions, some incoherent weight shows up in the con-
ductivity between the screened plasma frequency Ωp and



V. Vescoli et al.: Optical sum rules of the Bechgaard salts 153

higher frequency contributions. It is clear from Figure 2a,
that Iσ will saturate for ω < ωp, while the saturation
value for Ip will be reached only at higher frequency, since
the contribution to Ip comes from a narrow range around
Ωp at which the main contribution of the loss function is
located. A poor estimation of εc, or, in other words an
estimation taken at too high energies with respect to Ωp,
can thus lead to a situation where the saturation value
of Ip is too high or too low in comparison with Iσ. It is
therefore important to stick to an estimate of εc obtained
close to the value where ε1(ω) vanishes, as we did in our
fit (Eq. (11)).

If now the conductivity has some weight above Ωp,
our deduction of εc close to Ωp should lead to a saturation
plateau of the sum of the energy loss function Ip at a value
smaller than the saturation value of Iσ . As we can see in
Figure 3a this corresponds to the encountered situation in
(TMTSF)2PF6, where Ip saturates at about 1.7 eV2 and
Iσ at around 1.85 eV2 just above Ωp. This result is in clear
contradiction to the trend found by Jacobsen [2], where:
Isatσ < Isatp

∼= ω2
p.

Our value of ωp is significantly larger than the value
reported by previous authors. Given the overall consis-
tency of our results, we believe that it is more accurate.
This implies that the actual hopping integral along the
stacks is larger than that deduced from previous studies
(250 meV). For instance, in the context of a simple tight
binding Hamiltonian, this would lead to a hopping inte-
gral of 310 meV. However, this description is too simple,
and we now turn to a theoretical description based on
a more realistic one-dimensional microscopic model. The
relevance of such a model, as well as a discussion of rea-
sonable values of the parameters, can be found in [12].
The basic Hamiltonian can be written

H =− t1
∑

ieven,σ

(c†i,σci+1,σ+h.c.)

− t2
∑
iodd,σ

(c†i,σci+1,σ+h.c.) + U
∑
i

ni↑ni↓

+
∑
i

∑
l≥1

Vlnini+l. (12)

c†i,σ,ci,σ are fermionic operators creating and annihilat-
ing holes in the HOMO of the TMTSF molecules, ni,σ =

c†i,σci,σ and ni = ni↑ + ni↓. The parameters of this model

are: i) a hopping integral t1 for the short bonds; ii) a hop-
ping integral t2 ≤ t1 for the long bonds; iii) an on-site
repulsion U ; iv) inter-site repulsions Vl. Besides, there is
one electron missing for each pair of TMTSF molecules.
So the model is quarter-filled in terms of holes.

For the present purpose, the dimerization can be ne-
glected because its effect is just to shift the spectral weight
of the Drude peak at finite but small frequencies, so that
this has no detectable effect on the sum rule at energy
scales of the order of the bandwidth. Besides, these sum
rules are mostly dependent on parameters that influence
the kinetic energy, and for a quarter-filled system, the
main effect comes from the on-site repulsion U and the re-
pulsion between first neighbors V ≡ V1. So in this section

we will work with the extended Hubbard model defined
by:

H = −t
∑
i,σ

(c†i,σci+1,σ+h.c.)

+ U
∑
i

ni↑ni↓ + V
∑
i

nini+1. (13)

Following the previous remark concerning the value of the
hopping integral, t should be considered as an adjustable
parameter. The other parameters are not known accu-
rately. In particular, the determination based on Jacob-
sen’s analysis of the sum rules [13] must be abandoned on
the basis of the new data and interpretation presented in
this paper. However, a number of other experiments point
toward the following estimates: U/t ∼= 5 and V/t ∼= 2.
These parameters put the non-dimerized system close to
the metal-insulator transition [14] and are thus consis-
tent with a Luttinger liquid exponent Kρ close to 0.25,
in agreement with the interpretation of NMR and trans-
port data [15].

The optical conductivity can be calculated using stan-
dard numerical techniques based on the Lanczos algorithm
that allows to diagonalize the Hamiltonian on small clus-
ters [16] and to calculate the current-current correlation
function. As we use a Hamiltonian without the long-range
part of the Coulomb repulsion, i.e. with a screened in-
teraction, this current-current correlation function gives a
good estimate of the response to the total field, hence of
the real part of the optical conductivity. The results for a
16-site cluster are presented in Figure 2b, together with
the loss function deduced from a Kramers-Kronig analysis
of the real part of the conductivity. The hopping integral
was adjusted to reproduce the correct value of ωp, lead-
ing to the estimate t = 355 meV. Note that this value is
larger than the value one would get for a non-interacting
system (310 meV) because the correlations reduce the ki-
netic energy, hence the plasma frequency. The similarity
with the main features of the experimental results of Fig-
ure 2a is rather striking. Some incoherent weight shows
up however in the conductivity around the plasma edge
frequency, and according to the discussion of the previ-
ous section, this can have important consequences for the
comparison of the partial sum rules.

To know whether the 16-site cluster is representative
of the thermodynamic limit, we have made a finite-size
scaling analysis of the relative weight of the Drude peak in
the optical conductivity. The results are shown in Figure 4.
As can be seen, the scaling is reasonably accurate, and the
Drude peak should represent 96% of the spectral weight
in the thermodynamic limit, to be compared to 96.4% for
the 16-site cluster. So the 16-site cluster should provide a
reasonable description of the thermodynamic limit. Note
that the inclusion of the repulsion between neighbours is
quite important to get a non-negligible incoherent weight.

The integral of the conductivity Iσ and of the energy
loss function Ip are depicted in Figure 3b. There is of
course no need to include an εc in this analysis because
we are considering a single band. These results can be
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Fig. 4. Finite-size analysis of the relative weight of the Drude
peak for the model of Figure 2b.

compared to the experimental data (Fig. 3a) if the exper-
imental energy loss function is multiplied by the appropri-
ate ε2

c to account for the high energy contributions to the
optical conductivity. As we can see, the sum rules are only
consistent at a frequency about twice as large as Ωp. Just
above Ωp, the integral of the energy loss function is below
the integral of the conductivity, in qualitative agreement
with the experimental results. This gives further support
to the model of equation (13) with values of the ratios
U/t = 5 and V/t = 2 since this progressive saturation
between ωp and 2ωp of the partial sum rule of the loss
function is a direct consequence of the presence of weight
around ωp due to these correlation terms.

We conclude that both longitudinal and transverse
optical sum rules can be satisfied. Crucial seems to be the
correct and precise determination of the contribution to
the optical dielectric function due to the high frequency
residual spectral weight, which is incorporated by the
parameter εc. The meaning of the suggested theoretical
comparison could be further enhanced by reducing the
uncertainty in the determination of εc. We have shown
with the example on (TMTSF)2PF6 that this can be in

principle achieved by the investigation of the optical exci-
tation spectrum on a frequency spectral range extending
over several decades.
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